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CALCULATION OF FLOW AROUND THE LOWER SURFACE OF DELTA WINGS (2&2*

AT WIDE ANGLES OF ATTACK

A. P. Bazzhin

ABSTRACT

j 308

The method of integral relations in the first approxima-
1 is used for calculating the flow near the lower surface
of delta wings streamlined by a supersonic flow of gas at

wide angles of attack. Some calculation results are cited Ar/)

»

:

,

1. The method of integral relations has already been applied to the in-
vestigation of conical flow (ref. 1). The calculations cited in ref. 1 of the
flow near circular and elliptical cones at a zero angle of attack, and a cir-
cular cone at a small angle of attack (a = 50), revealed that the method was

fairly reliable.

Beginning at some angles of attack, the velocity of the transverse flow on

the surface of a circular cone becomes supersonic. A part of the region between

*Numbers given in the margin indicate the pagination in the original foreign

text.
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the shock wave and the solid body is occupied by the local supersonic zone with
the flow on the upper side of the cone no longer affecting the flow near its lower

surface.

It may be assumed, on the basis of physical considerations, that in the
case of an elliptical cone (with the minor axis of the ellipse in the symmetry
plane of the flow), the local supersonic zone on the surface of the solid body
will appear earlier, but will be localized in the apex vicinity of the major

axis of the ellipse within a wide range of angles of attack.

In the case of an infinite ratio of the elliptical cross section axes,
the cone becomes a flat delta. There are three streamlining conditions of such
a wing. With the angles of attack ranging from zero to some limit value, the
nose compression wave becomes attached to the front edges of the wing. This
type of flow near the wing is discussed in detail by numerous authors, particu-
larly in ref. 2 and ref. 3. When the angles of attack exceed the critical angle,
the nose compression wave leaves the front edges, but remains attached to the
pointed top of the wing. Finally, in the third streamlining condition at still
greater angles of attack, the nose compression wave leaves the wing tip, and

the conicity of the flow is disrupted.

The second streamlining condition, which is essentially the same in the
case of an elliptical cone (including a circular one) and a flat delta wing, is
discussed in this study. However, in the latter case the local supersonic zone
on the lower wing surface in the lateral plane is constricted to one point re-

presenting the front edge.



The entropy on the surface of a solid body plays an important part in the
calculation of the flow near conical bodies. In the case of elliptical wings,
the following picture of flow lines may be expected to emerge (fig. 1). At zero
angle of attack there are two spreading lines on the surface of the elliptical
wing; these are the foremost elements of the cone or the front edges of the wing
(fig. la). All the flow lines converge at point O (ref. 4). With the appear-
ance of the angle of attack and its increase, these spreading lines on the sur-
Tace of the solid body will shift toward the symmetry plane. The speed of that
displacement is largely determined by the eccentricity of the elliptical trans-
verse cross section: the smaller the section, the faster the spreading lines

will merge into a single line 00' in the symmetry plane on the windward side of

Figure 1
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the wing (fig. 1b). A similar flow-line picture will probably take place in

the case of a flat delta wing (fig. lc).

Consequently, the definition of the entropy on a wing surface is an a
priori impossibility. The value of the entropy on the surface of a solid body
remains a free parameter to be selected in the process of solution, as was indi-

cated in ref. 1.

Teking into account the flow in the transverse section of the wing which
1s schematically outlined in fig. 1b and lc, it is possible to raise the prob-
lem of defining the flow in the influence zone near the lower surface of the

elliptical or flat delta wing.

The solution of this problem by the method of integral relations (in the
first approximation) revealed that the number of unknown parameters is equal
to the number of the singular points of the approximating system of ordinary
differential equations. This has made it possible to find the unique solution

to the problem.

2. The problem is solved in a continuous spherical system of coordinates
r, ¥, 6 (fig. 2). The length of the wing is assumed to be infinite, and the
angle of attack a and the velocity of the incident flow (or Moo number) are
such that the compression wave is attached to the top of the wing. The azimuth
angle ¥ changes from ¥ = O in the symmetry plane to | = Vpax» and in the case
of a flat delta wing, the Vmax angle corresponds to the front edge. With

Y= 1.4, gas is considered ideal, inviscid, and thermally nonconductive.



Figure 2

The system of equations describing a conic flow may be recorded as
follows:
ao(p-}-pv')smﬂ-{— (g;f") (p + pw?) cos8 — 3 puvsin,
a.,(pvwsmﬁ)Jra,,(H—mv’) — p(vwcosd 4 Buwsing),

” (pvsin 8) - _Lt"’?_ 2pusm9 ‘ (1) [auk
po = 9 ), p—«p(ijfr—1 ~1zin),

where u, v and w are the elements of velocity V modulus in the direction of

r, 6, ¥, which are attributed to critical velocity a,.,pis the density attrib-

uted to the density of the incident flow Py s P is the pressure attributed to
2

Py 8 crs V2 = u + v2 + W2, ¢ (&) is the entropy function, and the constant

along the flow line £ = const.

The boundary conditions on the compression wave, whose equation is

0, = 0, (¥), can be represented as follows:

Uy = Voo (o]0 ] 61,

—1
—i-{-('r i)Vgo(i—-sin"t)lcos?B)
T+ in 6. sin?
V_smo; — Vo sinf,sin?8,

Uy =




w, = —tgP (v; + Voo sin ),

V2 sin® 6y cos? B ,
T—1 . ’
L - (TY—’{'T) V3, (1 — sin? 0, cos™B)

Pr= —T—E-_—i-V:osin’ 0 c08? B — (l%—,—r—i—) (1 —% V:o) )

(2)

Py =

where tg B = (1/sin 67) (d61/d¥). (Index 1 indicates the magnitudes on the com-

pression wave.)

The boundary condition on the wing surface 6y = 6, (V) represents the fol-

lowing nonflow condition:

he values of the magnitudes on the solid surface). The
concrete form of function M, (y) depends, of course, on the form of the wing's

cross section. For a flat delta wing,

My ($) = cosGyigy.

The form of function M, (¥) for an elliptical wing is considerably more

complicated, and is not shown here.

3. The transition to integral relations is made by integrating the first
three equations (1) by 6 across the shock layer from body 6, (v) to compression
wave 6 (¥). A linear approximation of integrands produces the following sys-
tem of ordinary differential equations, which is identical with system (2.5)

from ref. 1:
41 _ bioi + a0 (Bs + Mps) + As + Qi)

a? 161 -+ v, {63 (a3 -+ Mya;) — By}
duy 4 \ d%y aM
See — L [(aa+ Mot Tt — Oa+ Mp) — Si2-peoms],



di, |

doy _ dug  dM,
d
Vo ]

. [_ E,%-}- poc;(uo—d‘f- + G vowo) —0s— Z:] (3)

(the functions included in this system are cumbrously expressed by their own

arguments and are not cited here).

The problem can now be solved by integrating system (3) at the value
interval of independent variable ¥ which begins from the symmetry plane (¥ = O)
where

do;

a5 ~we=0-

The two unknown parameters of the problem are 8, (0) and uO(O). The values
of these parameters are selected by the only method of fulfilling certain con-

ditions at the singular points of the approximating system (3).

One singular point of the approximating system is definite: the point in
which the velocity of the transverse flow is equal to the local speed of sound.
In the case of an elliptical delta wing, the solution must continuously pass
through that point, i.e., the numerator of the last equation of system (3) must
also be reduced to zero at that point. The condition required in the case of a
flat delta wing is that the velocity of the transverse flow equal the local

speed of sound on the front edge of the wing.

The other singular points of the approximating system may be the points in
which the denominator of the first equation of system (3) equals zero. It was
found that in all the examined alternate versions of the problem, system (3) had

only one such singular point. The fulfillment of the continuous solution
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condition at that singular point, together with the condition at the sonic sin-
gular point, made possible a unique definition of both unknown parameters and
a unique solution. The selection of the values of the entropy functions on the

wing surface was made at the same time.

k., The most characteristic feature of the flow on a delta wing surface is
the usual presence of two spreading lines of flow. The results of the calcula-
tions of two flat delta wings with full angles at the apex equaling 33° and 3&0,
with M = 6 and angle of attack 50°, are shown in figs. 3 and 4. Figure 3 shows
the position of the compression waves near the lower wing surfaces, and the A'A

and A'A zero lines of flow constructed by the approximate integration of the

flow-line equations

3¢
¢

vsin 0’

A decrease of the wing angle at the apex results in a shift of the spread-
ing lines toward the symmetry plane, and a simultaneous diminution of the veloc-
ity and pressure gradients in their vicinity. The practical constancy of the

radial velocity, pressure and density on the median part of the wing is also

characteristic of a flat delta wing.
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The results obtained may be used for the study of heat transfer on delta

wing surfaces at wider angles of attack, now a matter of great practical

interest.

Submitted Sept. 2, 1963.
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